
tzSafe Audit
LIGOLang

Revisions
v0: 2023-07-10

v1: 2023-09-07

v2: 2023-12-18 – updated to tzsafe 0.3.3

Scope
We reviewed the tzSafe Cameligo code, at revisions 98b6da5c12ff, 763e9274fec9, and 
cee65a3f27b0. We did not review the compiled Michelson.

We lightly reviewed the application UX and code as well (around revision 2773f86b279b) 
but did not consider it in scope.

Summary
The contract itself appears to be quite good. We found only one critical problem in the 
contract code, now resolved.

Contract can reach an “invalid” state Contract, Critical, Resolved

Owners can trick other owners App, Vuln, Critical, Resolved

Possible confusion about settings App, Confusion

Confusion from concurrent settings changes App, Confusion

Linear storage cost to transfer assets Confusion

Linear storage cost in number of owners Confusion

Users should be able to change their vote Contract, Confusion

Possible client DoS by owners App, Confusion



Legend:

Contract: an issue with the contract code itself. We only found one, and it is resolved!
App: an issue not with the contract code but only the application; fixable without 
redeploying multisig instances
Vuln: an issue which could be exploited by an attacker
Confusion: a possible risk of liveness or safety issues due to user confusion or 
ignorance

Considerations

Safety
The key safety concern is that if the contract emits an operation, it should have been 
intended by the owners.

Functionally, we consider an operation to be “intended by the owners” when enough 
owners have “signed” the operation, based on the configured threshold.

However, it is important to consider owners’ real intent holistically over the span of 
multiple operations on the contract and in the context of the UI.

Liveness
The liveness concern is simpler: owners should retain the ability to cause the contract to 
emit operations, with constant gas/storage costs. Otherwise, value can be lost, e.g. in 
the form of stuck tez or token assets.

We mainly considered potential liveness problems in the contract itself. It may also be 
important to consider liveness problems in the client and infrastructure. One hopes that 
such problems could be fixed if/when they arise.

Trust
The key function of tzSafe is to distribute authority across owners, limiting the authority 
of each owner. Therefore, we do not trust individual owners completely, and we do 
consider possible attacks by owners. We do trust a quorum of owners (according to the 
configured threshold): e.g. if a quorum of owners intentionally lock up the contract 
forever, that is not a liveness issue but is working as intended.



Findings

Contract can reach an “invalid” state (Critical, Resolved)
The contract code includes a settings validation function, which checks e.g. that the 
threshold is at least equal to the number of owners, among other things. 

Previously, it was possible to enter an invalid state, even by using the official UI (e.g. by 
proposing multiple changes to owners and threshold and then executing them in an 
unfortunate order.)

The contract would then be locked forever as it would detect the invalid state and fail 
every operation immediately.

This has been fixed in revision 6fa25a1ddb8a by performing validation at the end of
each contract execution. So, if executing a proposal would cause the contract to enter 
an invalid state, the execution will simply fail.

Owners can trick other owners (Critical, Resolved)
Some proposals (including delegation changes and calls to other contracts) are 
represented with two pieces of data: a lambda containing the code which would be 
executed by the contract, and a piece of metadata (a JSON string) which can describe the
intended meaning of the lambda.

Previously, the UI displayed the proposal to users by inspecting the metadata only. This 
meant that a single malicious owner with a little bit of technical skill could trick other 
owners, by submitting proposals with faked metadata, which did not accurately 
represent the lambda code. For example, it was possible that owners would be shown a 
“set delegate to baker X” proposal for signing, only to find on execution that the 
proposal actually steals all the tez in the contract.

This issue has been addressed in more recent versions of the tzSafe UI. We did not 
examine this new UI code very closely, but it appears to do the right thing.

A related issue is that even when the client correctly determines that a proposal lambda 
is unrecognized and the effects are arbitrary, the client might fail to appropriately warn 
signers about the possible effects, and may even allow the proposer to mislead signers 
by displaying metadata chosen by the proposer. This issue also has been addressed in 
the most recent versions of tzSafe UI.



Possible confusion about settings
Users could have problems if the “settings” (proposal duration, owners, threshold) are 
changed to bad values. Examples:

• The proposal duration could be set too short so that proposals expire before 
users are able to sign them. Since v0 of this audit, the UI has been updated to 
warn signers about this.

• The threshold could be set too high. In the worst case, one or more owners could 
be unable to sign (e.g. bogus or lost keys) and if the threshold is too high, the 
contract could become locked forever.

• The threshold could be set too low, allowing some few owners to take over.

Generally speaking, the UI does not explain the significance of these settings clearly, 
and does not seem to appropriately warn signers about the dangers. The UI for signing 
owner/threshold changes seems very confusing in particular. (See also next finding.)

It would not be very surprising for signers to get confused and accidentally set settings 
to bad values.

Confusion from concurrent settings changes
If multiple owner/threshold change proposals are pending, their effects can be 
confusing or even indeterminate.

Here is one arbitrary example. Suppose there are 50 owners and the threshold is 26/50. 
Two proposals are created concurrently:

1. add 10 owners, set threshold to 31/60

2. remove 10 (different) owners, set threshold to 21/40

Note that both proposals attempt to maintain a majority threshold. Suppose these 
proposals are both signed by at least 31 users. Now they can both be executed in either 
order, and the combined effects are both indeterminate and somewhat confusing. If 
proposal 2 is executed last, the final threshold will be 21/50. If proposal 1 is executed 
last, the final threshold will be 31/50. Both of these outcomes may be surprising to the 
owners: neither of these is a majority and neither outcome was actually chosen by 
proposers. In any case, it does not seem very plausible that owners intended for the 
outcome to be indeterminate, so this could be considered a safety issue.



It is not clear how to address this issue. It could suffice to “linearize” settings changes by 
enforcing in the client that owners must resolve any pending settings proposal before 
signing another one, but this could introduce liveness problems if owners are forced to 
wait for a pending proposal to expire. It might suffice to have some kind of warnings in 
the client, when signing a settings change while others are still pending.

We suggest that a redesign of the threshold mechanism should be considered for future
versions of tzSafe. For example, it would seem to be much less confusing to configure 
the threshold by a rule like >50%, >2/3, etc, automatically keeping the required number 
of signers consistent with the number of owners. Other solutions are possible too. For 
example, a compare-and-swap-like approach could be used to enforce a linearization of 
settings changes without causing liveness issues, or each settings change proposal 
could describe the entire outcome. Such approaches would ensure that proposers and 
signers see the outcome they will actually get.

Linear storage cost to transfer assets
The design of the contract means that every proposal requires a storage burn 
proportional to the size of the proposal lambda. This means that transferring many 
unique assets (e.g. distinct FA2 tokens) away from the contract may be somewhat costly.
Users should be aware of this cost before transferring many unique assets to the 
contract.

Linear storage cost in number of owners
Owners should be aware that the storage costs associated with each proposal are linear 
in the number of owners signing. So, there is also a theoretical maximum number of 
owners beyond which the contract will become inoperable.

We don’t expect owners to reach these limits in practice… Perhaps some reasonable 
maximum number of owners should be enforced in the client, though.

Users should be able to change their vote
The contract does not allow a user to change their vote on a proposal. Theoretically, this 
could lead to a safety/liveness dilemma in some situations.

Suppose there is a pending proposal and some users have already approved it, but they 
change their minds and create a modified proposal instead. Suppose they want at most 



one of these proposals to be executed. Because they cannot change their vote, and 
because the other owners might not cooperate, it is conceivable they may be forced to 
choose between waiting for the first proposal to expire (with the configured arbitrarily 
long proposal duration) before signing the second proposal, or taking a risk that both 
proposals might be executed by signing the second proposal while the first one is still 
pending. That is, they are forced to choose whether liveness or safety is violated.

We consider this a minor issue since such situations do not seem likely to arise in 
practice.

Possible client DoS by owners
The contract itself appears to be immune to DoS, but the client could potentially be 
DoS’d by a malicious owner. This could be addressed in the client, without changes to the
contract.

Of course, there are many DoS risks not specific to tzSafe, inherent to the web and to 
Tezos. However, the tzSafe application specifically is designed to load and display every 
pending proposal. This seems to mean that one owner could DoS other owners by 
submitting very many proposals.

The worst case here is some very unusual situation, where one malicious owner stands 
to gain a lot from the contract being unusable for a certain period of time. One 
hypothetical scenario: if the tzSafe does a classic atomic swap and a malicious owner is 
on the other side, the malicious owner might reveal the secret while DoS’ing the tzSafe 
long enough to take both sides of the swap.

Of course, again, this is not specific to tzSafe; there is always a DoS risk with an atomic 
swap, for example.

However, tzSafe owners should either avoid such situations entirely, or use even longer 
deadlines than they normally would, leaving extra time for DoS problems specific to 
tzSafe to be mitigated in the application, or enough time to find a workaround (e.g. 
submitting transactions manually or using an alternate client.)


